Search results for " Shooting method"

showing 3 items of 3 documents

BEAM ELEMENT UNDER FINITE ROTATIONS

2021

The present work focuses on the 2-D formulation of a nonlinear beam model for slender structures that can exhibit large rotations of the cross sections while remaining in the small-strain regime. Bernoulli-Euler hypothesis that plane sections remain plane and perpendicular to the deformed beam centerline is combined with a linear elastic stress-strain law. The formulation is based on the integrated form of equilibrium equations and leads to a set of three first-order differential equations for the displacements and rotation, which are numerically integrated using a special version of the shooting method. The element has been implemented into an open-source finite element code to ease comput…

Finite rotations nonlinear beam shooting methodSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Multiplicity of ground states for the scalar curvature equation

2019

We study existence and multiplicity of radial ground states for the scalar curvature equation $$\begin{aligned} \Delta u+ K(|x|)\, u^{\frac{n+2}{n-2}}=0, \quad x\in {{\mathbb {R}}}^n, \quad n>2, \end{aligned}$$when the function $$K:{{\mathbb {R}}}^+\rightarrow {{\mathbb {R}}}^+$$ is bounded above and below by two positive constants, i.e. $$0 0$$, it is decreasing in (0, 1) and increasing in $$(1,+\infty )$$. Chen and Lin (Commun Partial Differ Equ 24:785–799, 1999) had shown the existence of a large number of bubble tower solutions if K is a sufficiently small perturbation of a positive constant. Our main purpose is to improve such a result by considering a non-perturbative situation: we ar…

Multiplicity resultsBubble tower solutions; Fowler transformation; Ground states; Invariant manifold; Multiplicity results; Phase plane analysis; Scalar curvature equation; Shooting methodGround stateMultiplicity resultsInvariant manifoldScalar curvature equation01 natural sciencesBubble tower solutionsCombinatoricsSettore MAT/05 - Analisi Matematica0103 physical sciencesinvariant manifoldground stateScalar curvature equation Ground states Fowler transformation Invariant manifold Shooting method Bubble tower solutions Phase plane analysis Multiplicity resultsFowler transformationMultiplicity result0101 mathematicsphase plane analysiPhase plane analysisPhysicsApplied Mathematics010102 general mathematicsscalar curvature equationShooting methodMultiplicity (mathematics)shooting methodPhase plane analysiGround statesBubble tower solutionbubble tower solutionmultiplicity results.Phase plane analysis010307 mathematical physicsInvariant manifoldScalar curvature
researchProduct

Efficient formulation of a two-noded geometrically exact curved beam element

2021

The article extends the formulation of a 2D geometrically exact beam element proposed by Jirasek et al. (2021) to curved elastic beams. This formulation is based on equilibrium equations in their integrated form, combined with the kinematic relations and sectional equations that link the internal forces to sectional deformation variables. The resulting first-order differential equations are approximated by the finite difference scheme and the boundary value problem is converted to an initial value problem using the shooting method. The article develops the theoretical framework based on the Navier-Bernoulli hypothesis, with a possible extension to shear-flexible beams. Numerical procedures …

Computational Engineering Finance and Science (cs.CE)FOS: Computer and information sciencesNumerical Analysiscurved beam geometrically exact nonlinear beam Kirchhoff beam large rotations planar frame shooting methodApplied MathematicsGeneral EngineeringComputer Science - Computational Engineering Finance and ScienceSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct